Boundary Control of the Kuramoto-Sivashinsky Equation with an Exteral Excitation
نویسندگان
چکیده
Abstract: We study a dynamic system described by the Kuramoto-Sivashinsky equation with an external excitation f posed on a finite domain. Firstly it shows that under the given boundary feedback conditions it admits a unique solution and the solution is stable. Secondly it proves that if the external excitation f is a time periodic function, then the system under the boundary conditions admits a unique time periodic solution and its period is the same as the f ′s.
منابع مشابه
Application of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملExact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملBoundary local null-controllability of the Kuramoto-Sivashinsky equation
We prove that the Kuramoto-Sivashinsky equation is locally controllable in 1D and in 2D with one boundary control. Our method consists in combining several general results in order to reduce the nullcontrollability of this nonlinear parabolic equation to the exact controllability of a linear beam or plate system. This improves known results on the controllability of Kuramoto-Sivashinsky equatio...
متن کاملInertial Manifolds for the Kuramoto-sivashinsky Equation
A new theorem is applied to the Kuramoto-Sivashinsky equation with L-periodic boundary conditions, proving the existence of an asymptotically complete inertial manifold attracting all initial data. Combining this result with a new estimate of the size of the globally absorbing set yields an improved estimate of the dimension, N ∼ L.
متن کاملNull Controllability and Stabilization of the Linear Kuramoto-sivashinsky Equation
In this article, we study the boundary controllability of the linear Kuramoto-Sivashinsky equation on a bounded interval. The control acts on the first spatial derivative at the left endpoint. First, we prove that this control system is null controllable. It is done using a spectral analysis and the method of moments. Then, we introduce a boundary feedback law stabilizing to zero the solution o...
متن کامل